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The Deformable-Channel Model—A

New Approach to High-Frequency

MESFET Modeling

FRANK J. CROWNE, ABDOLLAH ESKANDARIAN, H. BRIAN SEQUEIRA,
AND RAJENDRA JAKHETE

Abstract —High-frequency small-signal circuit parameters are evaluated
for a saturated-channel MESFET by including transit-time effects in a
rigorous way through a study of induced shape changes in the saturated-
channel region. Results agree well with empirical equivalent-circuit param-
eters for a physical MESFET.

I. INTRODUCTION

HE INHERENT material properties of GaAs, that is,

its high electron mobility ( ~ 5000 ¢cm?/V-s) and high
saturation velocity ( =1.2x107 cm/s) [1], along with the
availability of semi-insulating GaAs substrates with resis-
tivities on the order of 10°-10% ©-cm, have made GaAs
MESFET’s the active devices of choice in designing mono-
lithic microwave and millimeter-wave integrated circuits.
The major advantage of the monolithic approach [2] over
the hybrid approach is well known: various parasitic im-
pedances derived from the components of the hybrid struc-
ture (i.e., bond wires, bends, and interconnections) are
avoided. However, the major disadvantage of the mono-
lithic approach is equally well known: once built, an
integrated circuit cannot be adjusted by the trial-and-error
methods used by designers of hybrid circuits. It is there-
fore imperative that an accurate device model be employed
to characterize the MESFET’s used in a given monolithic
circuit. Furthermore, because of the complexity of the
circuit problem itself, such a model should be analytic
rather than numerical in order to facilitate computer simu-
lation. Unfortunately, the physics of MESFET operation
are so complex that no single analytic model exists at this
time that can accurately describe MESFET performance at
all frequencies and terminal voltages.

The most successful dc MESFET model to date is the
two-region model of Grebene and Ghandhi [3], which
crudely accounts for velocity saturation by assuming the
piecewise-linear velocity-field curve shown in Fig. 1. This
model divides the MESFET channel into two regions. In
the region adjacent to the source, the gradual-channel
approximation is assumed to be valid. The rest of the
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Fig. 1. Velocity-field relation for the two-region model

channel up to the drain consists of a thin change-neutral
sheet of undepleted free carriers moving at the saturated
velocity of the MESFET material. (We refer to this portion
of the channel as “saturated.”) The width of this sheet is
assumed to be constant for a given drain current, whereas
its length (i.e., the length of the second region) is a
function of the terminal voltages. A strongly two-dimen-
sional field distribution is assumed to exist in the second
region, originating from charges beyond the drain end of
the gate. This field ensures that the carriers move at the
saturation velocity and that all of the voltage drop across
the saturated part of the channel is accounted for. This
model gives an adequate set of I-V curves for a MESFET
under dc bias conditions.

Pucel et al. [4] derived the small-signal parameters for
this model using a quasi-dc approach; the equivalent circuit
was subsequently extended to higher frequencies by
Vendelin and Omori [5], who arrived at the equivalent
circuit shown in Fig. 2(a). In this figure, g, denotes the dc
transconductance, while 7,, and C,, are the drain-to-source
resistance and capacitance. C,, is the gate-to-source
capacitance and C,, the drain-to-gate capacitance; these
capacitances are determined by a procedure, described by
Pucel er al., in which part of the gate charge is assumed to
be controlled by the gate-to-source voltage, and the rest by
the drain-to-gate voltage. Convincing oneself that such an
approach must always lead to the same equivalent circuit
topology, given the assumption that no dc current flows
from gate to source, is not hard. The quasi-dc approach
can be naively justified by noting that for a free carrier

0018-9480,/87 /1200-1199801.00 ©1987 IEEE



1200

g0 1 1 - 'Lcdip l

> fds
Ri 3 Tcds
s O- 0 S
(a)
C
dg d
9 11
O 11 -O
Cas "ds
Glw)lys Cos [ ]z
sO Os
(®
Fig. 2. (a) High-frequency MESFET equivalent circuit; the elements
Caip- R,, and 7 are all empincal parameters. (b) Deformable-channel

equivalent circuit.

density of 107 cm ™3 and a mobility of 103 cm? (V-s) 1,
the dielectric relaxation time for the undepleted channel
regions is 7=¢/0 ~10"1® 5. This suggests that the free
charges can redistribute themselves almost instantly when
the terminal voltages change, moving in such a way as to
restore the dc relations between current and voltage.

Because of their short gate lengths, high-frequency
MESFET’s operate under bias conditions that ensure that
almost all the channel is “saturated” [6]. This circumstance
suggests that transit-time effects, which by definition
violate the quasi-dc assumption, will dominate the device
ac response, and that therefore the quasi-dc picture should
be reexamined. Indeed, the quantities R,, Cy,, and 7
(shown in Fig. 2(a)), which are related to transit-time
effects, are all obtained by curve fitting and cannot usually
be obtained from any model [7].

We present here a new model for the ac response of a
MESFET under these special conditions. Our model
includes transit-time effects from the outset and allows us
to go beyond the quasi-dc approximation in describing the
ac behavior of the MESFET. The basic new physics of the
device operation are discussed in Section II; a thorough
mathematical treatment is presented in Section III; and
modeling results and experimental results are compared in
Section 1V.

II. THE DEFORMABLE CHANNEL

The argument presented in Section I as a justification
for the quasi-dc approach cannot be sustained for the
saturated channel region. This is because the dielectric
relaxation time for a charge inhomogeneity in a nonlinear
material (i.e., 2 material in which the drift velocity v, of a
carrier due to an applied electric field E, is not simply
equal to pFE, where p is the low-field mobility) is
determined by the differential mobility

dvp

’I:— “
dE |g— g,

(1)

which is very small (in fact, negative) in the saturated-
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Fig. 3. Schematic of a MESFET for the two-region model.

channel region for GaAs. The result of this is well known
in the theory of IMPATT’s: [8] charge inhomogeneities do
not decay at all, but rather propagate across the drift
region of the IMPATT. This effect is, of course, well
understood by MESFET modelers, but its consequences
for a MESFET are difficult to quantify. In the IMPATT,
charge inhomogeneities propagate in the form of longi-
tudinal waves through the drift region of the device, with
no transverse current flow; this is a consequence of the
device geometry. In the MESFET channel, where the
geometry is that of a thin sheet, the transverse currents
cannot be ignored. Indeed, under high-field conditions the
mobility is a highly anisotropic quantity: transverse to the
channel it should assume its low-field value. From these
facts we draw the following conclusion: charge inhomo-
geneities that appear in the saturated channel relax quickly,
changing the channel shape locally. That is, a region of the
channel for which the free charge is greater than the
doping density N, quickly becomes a region in which the
channel width is larger than normal. This comes about
because excess charge is free to flow into the depletion
region on a time scale ~107'* s and restore local charge
neutrality. Likewise, when the free charge is less than N,
the channel contracts. These shape variations are assumed
to propagate down the channel just as compressional waves
do in the drift region of an IMPATT and, as we will show
in Section III, can significantly affect the ac impedances of
the device.

III. MATHEMATICAL DESCRIPTION

A. Preliminaries

Let us assume that the device geometry is the same as
that shown in Fig. 3: an epitaxial layer of length L and
width a, with a donor doping density of N,,. The width of
the saturated channel under dc conditions is denoted by b,
and is determined within the two-region model by the gate
and source—drain voltages. Let 8I,(x,¢) be the spatially
dependent total ac current flowing in the channel and
passing through a plane located at the point x. Because of
velocity saturation, the continuity equation then reads

d a
581D=—US—£81D (2)

which is the same equation as the one used in IMPATT
theory; v, is the saturation velocity. Let x = L, be the end
of the gradual channel. Then

8I,(L,,t) =8I,e%re (3)
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Fig. 4. Motion of a saturated MESFET channel. (a) “Breathing,” which
accompanies an ac drain current. (b) Propagation of a shape distortion
in the transit-time regime,

+ + +
+ +

where 81 p 15 the source terminal ac current. Equation (3)
implies that the gradual-channel part of the MESFET
responds instantaneously to a change in current at the
terminals. Then (3) and (2) imply that
- 1
8Ip(x, t)y=08Ipe/?li= =L x>,
for the current at each point in the channel. Now, let us
assume that the only way 81, can vary is through a change

in the channel height 8b; this is again consistent with the
assumption of instantaneous local charge neutrality. Then

81,(x,t) = Npev,z8b(x, 1)
where z is the gate width. This implies that

8b = N 81 = [8br+ 8b(x)yy] e’
where
. 81,
§p. .=
b Npev,z
and

55(x)uap = 8bye| o~ 0 -1]. @)

We have divided the channel width variation into two
parts: a low-frequency “breathing” part Sbu:, which cor-
responds to the channel expanding and contracting as a
whole, and a part SbHF, which contains the propagation
(i.e., transit-time) effects. These contributions are illustrat-
ed in Fig. 4, where we have adopted the symmetric JFET
geometry used by Grebene and Ghandhi (i.e. two identical
devices joined together along y = 0). Note that if w — 0 or
v, — 00, our 8byy term vanishes; it is thus an intrinsically
high-frequency quantity. If we proceed to calculate the
effect of §b, . alone on the terminal characteristics, and
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Fig. 5. Symmetric MESFET geometry.

ignore 8b . entirely, we recover the small-signal results of
Pucel et al., which are in fact based on this breathing
motion of the channel.

The two-dimensional Poisson equation for the potential
in the saturated-channel region now reads

82 82 v e
-5}—2—4- 8_)/7 (x,y51) —;;[H(X,y,t)_ND]-‘ (5)

The symmetric geometry of Grebene and Ghandhi as
shown in Fig. 5 simplifies the analysis greatly. Then

n(x,y;0) =Np[0(y+b(x,1))—0(y—b(x,1))]

where we introduce the usual step function

1, X
6’(X)={0 ng

to describe the free-carrier density. Let us write
n(x, y;t) =ny(x, y)+8n(x, y)e
b(x,t)=by+8b(x)e.
Assuming that 8b is small,
0(y+b(x,t))=8(y+by+8b)
=0(y+ By)+8b(x)8(y % by)
where 8(x) is the Dirac 8-function. If now
no(x, y)= ND[o(y +by)—0(y - bo)]
and
Sn(x,y)=Np[8(y+bo)+8(y- by)] 8b(x)

equating zero- and first-order terms in (5) gives

( 9 +-L)V0<x,y>=€i€[no<x,y>—zvp1 (6)

—5; ayz r-0
and
9> 3%\, Npe
_—— =—|8(y+5
(axz+3yz (s, 3) = T2 [3(0r+ b0)

+8(y = by)]8b(x). (7)

Grebene and Ghandhi solve (6); (7) gives the high-
frequency correction to the potential in the saturated chan-
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nel region. Actually, we can now write

5V(x, y)=Vie(x, )+ I}HF(‘x’ )
where the subscripts refer to the corresponding parts of 8b.
The potential V p now is precisely the small-signal
“breathing” correction to the saturated channel potential;

by solving for it we recover the expressions found in Pucel
et al., while

HE 20N Npe
_ =——|8(y+5b
(ax2+ ayl)VHF(x’y) €reo[ (y O)

+8(y—bo)]8byr(x) (8)
is the (two-dimensional) correction at high frequencies,
and 6bgg is half the value given in (4) due to the two
contributions to 817,

B. Solution to the High-Frequency Equation

In order to solve (8), we must assume some boundary
conditions for the 2-D region. An immediate condition is
that the perturbation of the potential vanishes under the
metal gate (i.e, at y =+ a):

I}HF(X’ _‘I: a) = 0.

We can ensure this by writing

<0
VHF(x7 y) = Z I/n(x)COSFny
n=0

i\ 7w
Tn=(n+—)—.

where

2)a

Note that the symmetric geometry results-in only cosine
terms. Now, we also can write

o0
8(y+bo)+8(y—by)= 2 J,cosT,y
n=0

where
n

2
J,=—cosT b,.
a

This decouples the Fourier components of the solution to
(8), each of which now satisfies an equation

32 Nne
( ,—r,f)v,,(x>=if,,abm(x>
dx~ €

where

and the factor of 2 comes from the symmetric device
geometry. At this point, we face the same problem as
Grebene and Ghandhi: what boundary condition do we
assume at the ends of the channel? If we assume that the
perturbation vanishes at the x = L; plane, we will at least
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be guaranteed continuity of the potential across the plane
(i.e., a match with the gradual channel solution). However,
it is not correct to also specify the normal derivative of
I}HF on this plane, as Grebene and Ghandhi (implicitly)
did; the Poisson equation requires a boundary condition
on the plane x=L (ie., the end of the channel), either
Dirichlet or Neumann, to give a unique, stable solution [9].
We will assume that the normal field falls sharply at this
point, since the channel will begin to “open up” beyond it
and the relaxation time will return to its bulk value,
thereby “shorting out” the high-frequency perturbation.
Then

(10)

d .
b’;VHF(x’)’) =0.
x=L

Now, any solution to (9) is of the form

I/n(x) = Anern(x_Ll) + Bne_r”(x_L‘) + Cn + Dne_j;s(x_ o

where 4,, B,, C,, and D, are constants. It is easy to show
that

+QJ,
“T T

- 0J,
D=

kZ+T}

where k, = w/v,. Using

I}HF(LD )/) =0

and condition (10) gives

) —QJ k. ke Trls 4T g =ikl
" 2[2coshT,L, k2+T2

2 —QJlk, kel — il e7/k1a
" 2I2coshT,L, k?+T?

and L, = L - L, is the length of the saturated channel.

C. Calculation of Terminal Parameters

Because of the change in potential in the saturated
channel, there are two new contributions to the terminal
parameters: an additional voltage drop down the channel
and an additional charge induced on the gates. The voltage
drop is simply

AI}HF = I}HF(L’O)

X V(L)
n=0
2]

Y ATt 4+ Be a4 C + DIkl
n=0

Note that the constants 4,, B,, C,, and D, are all
proportional to Q (i.e., to 6,). Hence,

AVyr=Z(w)81,,.

Since this voltage adds directly to V), the impedance Z(w)
should add directly to the r,, calculated by Pucel er al.
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Z(w) is a pure transit-time impedance, i.e., it reflects the
fact that charge is stored in the saturated channel due to
the finite travel time across the device.

To find the charge induced on the (upper and lower)
gates, we follow Grebene and Ghandhi:

L
0Qur= +2€,eozf -
1

1

Jd .
?):VHF(xs )’)‘v=adx

oC
=—2¢,€,z 3,

[(——1)"An(er"L2 -1)+ B,(1— e Tnt2)
n=20

JL,
+ G, Ly+ D7~ (e - 1) .
Ly

If we now write the ac gate current as
81 ¢=1J stNHF
then
81,=-G(w)bI,

where G(w) defines a current-controlled current source
that depends on frequency.

Let us derive the Y matrix including these new small-sig-
nal elements. From the equivalent circuit shown in Fig.
2(b), we have for the intrinsic FET alone (C,, = C,, = 0):

81, = juC, — G(w)dI),

= jwCy + G(w)8I,,
and
8y = 8,8V, + i (8Vy + Z(w)81))
= 8,0V, + 18V, —r, Z(w)dI,
where 81,,=81,, 81, =— 8I), according to the usual con-

vention. Solving these equations gives

8Iin _ Yll Yl2 81/0
SIout B Y21 Y22 SI/D
where
. rdsG(w)

Y= szgs + —”ds T Z () S
. __G)
12—rds+Z(w)

ds
Y, = ——
21 rds+Z(w)gm
v 1
22—rds+Z(w)

and ry, g,,, and C are all quantities given by Pucel ef al.
Note that the presence of G(w) makes the transistor
intrinsically bilateral at high frequencies, even when para-
sitic capacitances are neglected. Note also that Z(w),
G(w)— 0 as w — 0, so that we recover the usual quasi-dc
Y matrix of the intrinsic FET.
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By using a rather elaborate mathematical technique (the
Watson—Sommerfeld transformation [10]; see the Appen-
dix), we can rewrite Z and G in the following form. Let

1
0, = (n—%—E)w
w
§—0_st
a=L,/a
p=by/a

Then

where I/ is the pinch-off voltage, I the saturation current
as defined by Pucel et al,, and

2 sinh[(1-p)e,/a]

8(8) = —4a§n§0 o0 cosh (o, /a)
Joe = (-1)"¢
. -

and

, > cosh(po,/a)
G(w)=1-jg—e#+2j8* ) m(%‘%

n=0"n
joe = (-1)"¢
’ g-z — g2 .
Each term of the infinite series has the factor
Jjoe = (-1)7¢

2 2
{*—o;

which looks as if it diverges for { =+, In fact, the
numerator also vanishes, so that this factor actually is
finite.

IV. COMPARISON OF MODELING AND
EXPERIMENTAL RESULTS

As we mentioned earlier, the standard equivalent circuit
model for the MESFET at high frequencies shown in Fig.
2(a) has, in addition to the usual quasi-dc capacitances
Cour Cyy» and Cy, two other elements— Cy;, and R,. This
is because we must account for the experimental fact that a
measurement of the admittance Y},, which should be purely
imaginary (it relates the feedback gate current to the drain
voltage, which can only be mediated by C,, for low
frequencies) [11], reveals that ReY), is in fact positive and
varies with w?. Using the circuit topology shown in Fig. 4
yields the following low-frequency value for ReY,,:

ReY), = 0*Cy R.C,,.

(11)

In [12], the response of a real 1-um transistor is analyzed,
and small-signal circuit parameters are given. The bias
point for the transistor, which corresponds to these param-
eters, puts the transistor well into saturation, so that its
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response is dominated by the saturated portion of the
channel; hence, it constitutes an excellent test of our
model. The numbers given in [12] that are relevant to our
analysis are

Cyp=0.12 pF
C,, = 0.62 pF
R,=269.

Inserting these numbers into (11), we find that the coeffi-
cient of w? turns out to be 0.0322 (ps)*- 2~ L. Let us now
examine what our model predicts for this case: using the
Grebene and Ghandhi dc model with a saturation velocity
of 1.3X10”cm/s and a mobility of 4500 cm?/V-s, we find
that p=0.35 while the length of saturated channel is
L, = 0.6 pm. The low-frequency expansion of ReY, is to
order w?

2

(1+4Cy)r; 0? (12)

2
v

1{L
Relezz

5

where

on
: w Cosh p—
Co= Z ‘ %n
n=0 ¢ cosh —
44
(4n additional factor of 1/2 is needed to go to the asym-
metric FET case). Working backward from the value I
=70 mA is given in [12], we find that ¢ =0.2pm; using
the value of r,, from this reference gives a value of 0.024
(ps)?-Q71, in rough agreement with the equivalent circuit
value. If we change v, to 1.1X10’cm/s, we get a value of
0.042 (ps)?-Q1; the experimental value is bracketed be-
tween these limits. It is noteworthy that our results depend
so sensitively on the values of saturation velocity, length of
channel in saturation, and p used; sirice all of these
quantities are rather ill defined in a real MESFET, the
model must be used with care. As we see it, the correct
procedure to use is the following:

1) Fit the dc data to derive a value of saturation veloc-
1ty.

2) Fit the low-frequency data to derive a value of
(g,, seems to well calculated from the PHS model,
but r,, has a notorious 100-kHz “roll-off,” which
must be avoided).

3) Evaluate our corrections based on this phenomeno-
logical data.

Fig. 6 shows Re Y, as a function of frequency when the
saturation velocity is chosen so as to match the equivalent
circuit coefficient of w?. Curve (a) shows the empirical
(equivalent-circuit) dependence and curve (b) is the one
predicted by our model. The agreement appears to be
excellent well beyond the 12-GHz limit of validity of the
equivalent-circuit fit. Extrapolating the equivalent-circuit
result to higher frequencies shows that our results depart
from it at about 60 GHz.
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model.

V. DIscUSSION

The infinite sums that appear in the definitions of G(w)
and Z(w) are found to resonate at frequencies given by
[r3)2-(a);
w,=|lnt+t—-|—=|n+—-|—
- 2L, 2]
where 7, is simply the transit time across the saturated
channel (note that these resonances occur at very high
frequencies). It is worth noting that if we do not perform
the Watson—Sommerfeld transformation, the resonances
remain “hidden” in the series (ie., 4,,B,, C,, and D,
show no particular resonant behavior by themselves). Of
course, it is not surprising that some resonant behavior
should occur in this system. However, our expression for
the Y matrix points up a rather significant feature of the
analysis: compared to r,,, the modulus of the impedance
Z(w) actually is quite small, so there is effectively no
transit-time factor e /" in the transconductance. The rea-
son this factor is absent can be traced to the fact that all
high-frequency corrections to the terminal variables are
proportional to the drain current &I, whereas only a
correction proportional to 8V, can affect the transconduc-
tance. However, our boundary condition under the gate
[VHF( x, a) = 0] automatically eliminates any possibility of
space-dependent (i.e., transit time) behavior due to gate-
voltage fluctuations. Note that this also is in agreement
with experiments: the time 7, which is found empirically
from fitting data, is always much smaller than the transit
time. Therefore, we suggest that what experimenters are
actually seeing is the small complex part of Z(w), which
gives g, a small imaginary part, and not some fictitious
“phase delay” down the channel. Since Z(w) is related to
change storage, it is plausible that its effect on the circuit
will mimic precisely the type of transit-time delay which
the phase factor ¢™/“’ is supposed to model; indeed, its
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complex value is reminiscent of the “transit angle” which { -plane
appears in IMPATT theory.
€Cs €, C4 | & C G
APPENDIX . ~ C YL MO LN
EVALUATION OF g(¢) AND G({) Srig) \3n/yf \mizJI\ni2) 3n/2) \§n/2)
The voltage drop down the channel can be written in the
following form:
Av=2Qa ¥, [A(a,)+ A(=0,)] cos po, @
n=20 a
where
/N
—1| B(B+ joewP=) 1 - jaeE 1 -
Alo) =5 2(B%+ a?)coshas 2 B—ja 2
J o c-plane
and ‘ Lnia- 1 )
( 1 ) Cx. Cy,
o, =|n+ |7
2 W
a=L,/a P
B=k,a \
L
p=by/a. !
Now, it can be shown that the quantity 4(¢) has the
following properties for complex o: (a) it is analytic at - 7
o =0 and o = £ jB, and (b) it has poles at Cy.
i ()
coshac=0—-0= ian. Fig. 7. Watson~Sommerfeld contours. (a) Contour for the original in-

finite series (a separate C, for each series'term). (b) A new contour for

. . the entire sum.
Applying the Watson-Sommerfeld method, we can write

the terms of the sum in the form

form
* dz elP*
-2j —_— cos po
J,,=Z_°o¢%”27rj 1+e2/’A(Z) 8Qur =2eQaz Z (-1)'——
n=0 O,
where the contours C, are shown in Fig. 7(a). Let us 2= jao, 1 P o—JaB\( 0O _
deform all these contours into the single contour shown in ! (B ¢ :_ B (’Z"e )(e D)
Fig. 7(b) with C,,,C,, going off to infinity. It can be (B*+0?2)cosha,
shown that the integral vanishes on these contours; after a
lengthy computation we obtain [ Bl % 4 jB(—g,) e-ja/?] [ex—o ~1]
‘ 1% (B?+ 6?2)coshao,
AV =+ 81, 711 £(%)
200 e/ -1
where ~2a0, -~ —5——=5 .
{:aﬂ:sz/Us 0, +B JB
and Let us rewrite the last two terms, using
* sinh [(1 a] joe 1
g()=-4a; Y 5 [C(()Sh(ljr)/a/) ] . J o _(0 )8 o+ o) ' e /-1
n=0 n n n 6,;2 + Bz jﬁ

as stated in the text.

p— aB _ .
As for the gate charge, using the expressions for 4,, B, -5 e’ 1+ joB

C,. and D, given in the text, we can write 8Qyp in the " JB

ne

+ (e =)

2+B2
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and separate them out from AQHF, defining

We now multiply this by jw to get the ac gate current:

o - ,cospo, e /P -1+ jaf 81, =Gél;,
5Qo=2<QaZ,Z (- ’ - (-2)
=0 o, B where
\ = cosh(po,/a)
(=2 o .08 po, G=1-j —jef L ip2; €0 n
L . =1— jaB —e 7™+ -2) Y
= 2eQaz (e —1+jaB) X (- o jop JBa(=2) Z o 0,-cosh (o, /a)
n=90 n
. : -1)"B - j(o,/a)e/*k
The sum gives 1/2; so ) [( )" :'[;2 J(zn//z) ]
. -0,/
~1 ' n
8Q, = 2eQaz _—j,B (e =1+ jap). is the dimensionless source strength given in the text.
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is in fact analytic at ¢, =pf. Again, a lengthy Watson— 3
Somimerfeld calculation gives
.2 1 cosh(ps,/ a)
80, =2¢Qazaf Y, — ——r "
.02 cosh(s, /a)
n cQ n n
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